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ABSTRACT 

Progressing technologies have led to the development of numerous methods to analyze the emergent 

pool of modern and ancient genetic data that decode the pieces of information hidden inside the 

genome. This can reveal different facets of the demographic history of not just the human populations 

but other organisms too. However, these methods are so different in their approaches that they can be 

applied in numerous ways to comprehend the human past at a deeper level. Considering the diversity 

and versatility in approaches, here I review a set of broadly used methods that follow a specific 

approach to identify and explain the admixture events, the singular or multiple mixing between two 

genetically distinct populations. Particularly, I give an overview of the key methods to explicitly detect 

and quantify admixture by the measure of relative genetic drift observed in populations analyzing 

genome-wide data, especially focusing on autosomal SNP markers.  These methods may not cover the 

whole picture of human population history; nevertheless, they have significantly transformed our 

perception about human evolution by unveiling the complexity of the demographic history of human 

populations to a great deal. 
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INTRODUCTION 
Archaeological, genetic and linguistic studies so far 

have provided enough evidence about long-

lasting migratory behaviour of the ancestors of 

modern humans (Gray and Atkinson 2003; Boivin 

2007; Reich et al. 2009; Reich et al. 2012; Lazaridis 

et al. 2014; Haak et al. 2015; Lazaridis et al. 2016; 

Pagani et al. 2016; Bae et al. 2017). These 

migrations led the ancient ancestors of modern 

humans to intermix not just within themselves but 

even with our distant cousins, the archaic 

hominins- Neanderthals and Denisovans, after 

they expanded out of Africa (Green et al. 2010; 

Reich et al. 2010; Prüfer et al. 2014; Stringer 2016).  

The period after the advent of farming and 

pastoralism during the Neolithic period was 

supposedly the era of multiple migrations and 

intermixing when we see the pieces of evidence 

that testify the explode in movements and 

admixture among different groups of modern 

humans across most of the global geographical 

landscapes (Lazaridis et al. 2014; Haak et al. 2015; 

Lazaridis et al. 2016; Damgaard et al. 2018; 

Mathieson et al. 2018). Such movements changed 

the genetic composition of the older people living 

in different continents by replacing the earlier 

populations via admixture, consequently shaping 

the genetic diversity of modern human 

populations across the world (Reich 2018). In 

general, admixture between population groups 

affects the genetic variations and risks of diseases 

of an admixed population, which receives its 

genome from the intermixing of distinct 

populations. Therefore, investigating the ancestral 

origin of an admixed population offers a prospect 

to gain insight into the record of ancient forebears 

of a modern admixed population that may not be 

surviving at present.  

Using ever-evolving statistical tools, we can 

analyse the growing body of modern and ancient 

human genomic data to comprehend the 

demographic history of human populations, 

consequently extracting the information about the 

timing and processes involved in shaping the 

current level of genetic diversities among modern 

human populations. Mostly, two classes of tools 

are used frequently; the global-ancestry based 

methods e.g., PCA (Patterson et al. 2006), 

STRUCTURE (Pritchard et al. 2000) and 

ADMIXTURE (Alexander et al. 2009), and local 

ancestry-based methods e.g., LAMP 

(Sankararaman et al. 2008), HAPMIX (Price et al. 

2009), PCAdmix (Brisbin et al. 2012), 

fineSTRUCTURE (Lawson et al. 2012). The global 

ancestry methods identify the population 

substructure quite robustly, but they cannot be 

used as formal tests of admixture because of their 

inability to distinguish if the detected patterns are 

a result of single admixture history or multiple. 

Whereas, the local ancestry methods are useful to 

understand the recent population history, but they 

are unable to trace the older admixture events of 

the past (Patterson et al. 2012). Nevertheless, a 

study by Cavalli-Sfroza and Edwards 

(Cavalli‐Sforza and Edwards 1967) instigated the 

researchers to develop a group of methods that 

can model population relationships in addition to 

formally testing the population admixture histories. 

These methods analyse the allele frequency 

patterns among a set of populations and discover 

population history by comparing the amount of 

genetic drift in different populations (Reich et al. 

2009; Patterson et al. 2012).  Here I summarize the 

basic concepts and applications of a few of key 

methods that are widely used currently to deduce 

the admixture history of human populations 

including the true admixing sources from a list of 

possible admixing groups, admixture dates, 

mixture proportions, and relating different ancient 

populations to a population group of interest via a 

graph. 

Detection and quantification of 

admixture through f-statistics  
Populations with identical allele frequencies i.e., 

with a common level of genetic variation signify a 

shared history for such groups, contrary to the 

populations that are genetically diverged (i.e., 

populations with different allele frequencies). 

Exploring such patterns of genetic variation shared 
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between population groups might provide 

answers to complex admixture histories of human 

populations (Pickrell and Reich 2014; Schraiber and 

Akey 2015). One such prominent tool, f-statistics, 

first commenced by Reich et al. (Reich et al. 2009) 

to establish the origin of highly diverged Indian 

populations by analysing their shared genetic 

history, has become one of the most widely used 

methods in modern and ancient DNA studies 

(Patterson et al. 2012), (Green et al. 2010; Metspalu 

et al. 2011; Rasmussen et al. 2011; Reich et al. 2012; 

Allentoft et al. 2015; Haak et al. 2015; Lazaridis et 

al. 2016; Pathak et al. 2018). The popularity of the 

f-statistics largely comes from its power to study 

the admixture events that occurred every so often 

in the history of human populations (Novembre 

and Peter 2016). f-statistics that include f2, f3, and 

f4 statistic, use the allele frequencies observed in a 

set of two, three and four populations to compute 

the amount of genetic drift shared between the 

corresponding number of populations in unrooted 

tree phylogenies and infer if they share a common 

population history or not (Patterson et al. 2012; 

Peter 2016; Harris and DeGiorgio 2017).  

 

Table 1. Drift measuring methods in a nutshell 
 

Method Application Advantages/Limitations 

f3 Admixture Three population tests to detect if a Test 

population is derived from the admixture 

between two populations. 

Can detect admixture even when the Test has 

received equal number of alleles from two 

admixing groups; But susceptible to the private 

genetic drift of a population. 

f3 Outgroup Three population tests to measure the 

closeness between two populations based 

on their shared drift. 

Unlike other genetic distance measuring 

approaches like FST, this method is unaffected by 

private drift in a population. 

f4-statistics Validates a suggested tree topology of four 

populations in unrooted phylogenetic tree. 

Detects admixture, but can not specify direction 

of admixture.  

D-statistics Validates an Outgroup-rooted phylogenetic 

tree of four populations. 

Can detect directional gene flow among four 

populations. 

qpWave Models a Test population to obtain number 

of migrations involved in its admixture 

history.  

qpWave and qpAdm may provide confounding 

results in case of recent gene flow between 

reference groups and Outgroups. 

qpAdm Estimates the proportions of ancestries a 

Test has received from distinct migrant 

groups. 

Much robust than earlier used f4ratio to estimate 

ancestry proportions, especially useful with the 

ancient genomes. 

qpGraph Relates populations in a Admixture graph 

and estimate admixture fractions too that 

best fit to computed f-statistics.  

More precise than other graph methods; 

Requirement of a pre proposed tree limits it to a 

smaller number of populations. 

MixMapper Extension of qpGraph that builds a graph 

relating larger populations by assigning 

admixed and unadmixed groups. 

Does not need a pre-proposed tree; Can present 

migration edges like TreeMix; Much precise than 

TreeMix; Cannot handle as large data set as 

TreeMix can.  

TreeMix Iterative Maximum likelihood approach to 

generate Admixture graph that may contain 

migrations between population lineages 

Can handle larger data set than other graph 

methods; Confounding estimate of branch length 

if a population is highly drifted and low-coverage 

genomes.  

ROLLOFF Dates admixture event from weighted LD 

curves. 

Can date older admixture events than other 

methods; Slow and prone to sampling bias, 
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bottlenecks, and background LD noise. 

ALDER Dates admixture from weighted LD curve 

and is a statistical test for admixture.  

Faster, not prone to background LD noise, 

sampling bias and bottlenecks; can detect 

admixture if one of admixing sources is unknown, 

but dates only recent mixing event in case of 

continuing admixture in the history of a 

population. 

MALDER Extension of ALDER that detects and dates 

multiple admixture from distinct sources.  

Dates multiple waves of population admixture; 

cannot distinguish between a gene flow from 

direct source and that from a group admixed with 

the direct source.  

 

f-statistics assume that populations sharing 

identical amounts of genetic drift plausibly share 

their evolutionary history too (Patterson et al. 2012; 

Peter 2016; Harris and DeGiorgio 2017). Drift is a 

change in the occurrence of an allele along 

different sides (edges) of a graph, thus the drift 

between two populations is proportional to the 

difference in observed allelic frequencies of an 

SNP between those two populations. f2-statistic 

calculates the amount of genetic drift or genetic 

difference between two populations like Wright’s 

FST does. However, f2 is distinct from FST in two 

ways; the additive nature i.e., branch edge of 

phylogenetic tree is the sum of individual branch 

lengths, and populations fitting in sub-branches 

farther from the tree root display higher amount 

of genetic drift relative to the root population 

since the branch length is higher, but show lower 

f2 values mutually because the branch length 

between them is smaller (Patterson et al. 2012; 

Peter 2016; Harris and DeGiorgio 2017).  f2-statistic 

is useful in applying as the measure of drift that 

define a graph edge of the admixture graph or a 

phylogenetic tree. 

 

Testing admixture 
f3-statistic also known as f3 admixture test, is a 

three-population test to evaluate the genetic 

diversity of a population (A) of interest from two 

other population groups B and C and assess if 

population A descends from the mixing between 

groups B and C. Mostly, if population A derives its 

ancestry from two groups B and C due to the 

admixture, the observed allelic frequency of a 

polymorphism (pA) should remain between allelic 

frequencies (pB and pC) observed for the same 

polymorphism in groups B and C, respectively 

(Patterson et al. 2012; Peter 2016; Harris and 

DeGiorgio 2017; Wangkumhang and Hellenthal 

2018). Thus, statistics f3(A; B, C) is the 

multiplication of the frequency differences 

between populations A and B (pA-pB), and A and 

C (pA-pC), normalized and averaged over all 

SNPs, so, f3(A; B, C) = (pA-pB) (pA-pC). Since (pA-

pB) and (pA-pC) is the amount of genetic drift 

between populations A and B, and A and C, 

respectively, the value of statistics f3(A; B, C) is 

correlated to the comparative drift or branch 

length between populations A and B, and A and C. 

In the absence of admixture, the genetic drift 

along the lineage that produced population A, 

after its separation from the ancestor population 

group, must be positive (i.e. > 0). Thus, statistics 

f3(A; B, C) > 0 implies that population A does not 

arise out of the admixture between populations B 

and C. On the other hand, a significant negative 

value (< 0) of statistics f3(A; B, C) indicates the 

population A derives from the admixture between 

populations representing B and C as the allele 

frequency of population A (pA) falls between that 

of B (pB) and C (pC). The significance of f3(A; B, C) 

value is assessed utilizing the weighted-block jack-

knife resampling method that first divides the 

genome into independent chromosomal blocks, 

then computes the weighted mean value of 

statistics across all blocks of the same size and 
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divide it with the standard error of statistics, thus 

getting a mean Z-score. Nonetheless, we need to 

be cautious about a false reading of statistics f3(A; 

B, C) when population A displays a high private 

drift due to the genetic isolation or bottleneck post 

admixture event. In such a case, the value of its 

allele frequency pA will not fall between pB and 

pC, thus hiding the admixture signal and resulting 

in a non-negative f3 value (Patterson et al. 2012; 

Reich et al. 2012; Wangkumhang and Hellenthal 

2018). 

 

Measuring genetic relatedness  
Raghavan et al. (Raghavan et al. 2014) developed 

a form of statistics f3, known as ‘outgroup-f3’, in 

the form f3 (Outgroup; A, B) to compute the 

relative genetic attraction between a particular 

ancient group and a panel of modern populations, 

finding the contemporary population that is 

genetically most close to the particular ancient 

group of interest. In general, the African Yoruba 

population is considered as the outgroup for all 

non-Africans (both ancient and modern groups 

e.g., A and B) and the genetic drift along the 

lineage of the outgroup is supposed to be 

constant for all non-Africans due to a long term 

divergence from the outgroup until the population 

A and one of the populations from the panel B has 

some amount of gene flow.  Thus, f3(Outgroup; A, 

B) measures the amount of shared drift of the 

population A with populations from the given 

panel B. A higher value of f3(Outgroup; A, B) 

refers to a higher shared drift between the ancient 

group (A) and the present-day population from 

panel B, implying a higher genetic closeness 

between them. Though outgroup-f3 is also a 

measure of genetic distance like Wright’s FST, the 

advantage of the outgroup-f3 is that it is not 

susceptible to the genetic drift experienced 

privately by two test populations since their 

divergence from the outgroup (Raghavan et al. 

2014). 

Validating a tree topology 
Another framework of f-statistics is f4-statistic, a 

test of treeness that validates a suggested 

topology of an unrooted phylogenetic tree by 

computing the amount of shared drift among four 

populations. If a set of four populations, A and B, 

and C and D with allele frequencies pA, pB, pC, 

and pD make a phylogenetic tree, the f4 statistic 

computes (pA-pB) and (pC-pD), averaged across 

all loci, to evaluate the correlated variation in the 

allele frequency differences between populations 

(A and B) and (C and D), and formally authenticate 

whether populations (A, B) and (C, D) fit in two 

distinct branches of the tree.  

The three possible unrooted tree topologies: ((A, 

B), (C,D)), ((A,C), (B,D)), ((A,D), (B,C)) describe four 

viable relationships for a set of four populations in 

the absence of any  admixture. If topology ((A,B), 

(C,D)) is correct, the value of statistics f4(A,B;C,D) 

should be 0 because when there is no admixture, 

the difference in the allele frequencies between 

populations A and B i.e., (pA-pB) is unaffected by 

allele frequency difference between C and D i.e., 

(pC-pD), implying the genetic drift between 

populations (A and B) and (C and D) are not 

linked. Thus, in the context of all viable tree 

topologies, if the value of f4-statistic deviates 

significantly from 0, it indicates a possible 

admixture scenario between populations of two 

branches consequently, a simple phylogenetic tree 

connecting these four populations is impossible if 

we rule out admixture.  A significant positive value 

of f4-statistic in the form f4 (A,B;C,D) suggest a 

higher genetic affinity between populations A and 

C or B and D; however, an additional closeness in 

genetic ancestry between populations B and C or 

A and D  gives a significant but negative value of 

f4-statistic.  In one way, f4-statistics is capable of 

testing the admixture as the f3-statistic does, but it 

cannot specify the direction of admixture that f3-

statistic can.  
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Figure 1. Representation of f- and D-statistics: (A) phylogenetic tree of simple admixture where B’ and C’ 

split from a root population R. Population A’s ancestral lineage G was formed by admixture (between B’ 

and C’) in proportions α: β, (β = 1−α). Contemporary populations A, B, C  are formed by drift from their 

ancestors (G, B’ and C’ respectively), thus f3(A; B, C) will give negative value; (B) Outgroup statistic 

f3(Outgroup; A, B) measures the closeness between populations A and B, as measured from outgroup, 

the red colour indicates the branch length from outgroup to the common ancestor of A and B: Higher 

value of the statistic indicates more genetic similarity between A and B; (C) Unrooted four-population tree 

topology showing the relationships between populations A, B, C, and D, wherein A, B and  C, D are 
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forming two individual clades. The result f4(A, B; C, D) = 0 indicate that the tree is consistent, while a value 

beyond 0 indicates otherwise; (D) D-statistic representing a rooted four-population asymmetric tree 

relationship between modern humans (Africans or, non-Africans) and Archaic hominins (Neanderthal) 

using Chimpanzee as the outgroup, the same can be applied for any four population combinations (Ref1, 

Ref2, Test, Outgroup) in Patterson’s D-statistic.  abba configuration shows derived allele sharing between 

Ref2 and Test that will increase the value of D-statistics, baba configuration indicates derived allele sharing 

between Ref1 and Test decreasing the value of D-statistic. Adapted from Green et al. 2010 and Patterson 

et al. 2012. 

 

Also, consider the admixture scenario when 

population D received identical amount of genetic 

ancestry from two populations (B and C), while the 

third population (A) is an outgroup; in such a 

situation, f4-statistics might not be able to detect 

the admixture, but f3-statistics truly infers the 

occurrence of admixture (Patterson et al. 2012; 

Reich et al. 2012; Harris and DeGiorgio 2017). An 

application of f4-statistic is f4 ratio (Reich et al. 

2009; Patterson et al. 2012; Reich et al. 2012) that 

estimates the amount of ancestry contributed by a 

probable ancestral group to the admixed 

population of interest. In f4 ratio, we use five 

population groups (A, B, C, D, O) to first obtain 

two sets of f4-statistic values, combining four 

populations in each set, and then divide them in a 

form p = f4(B,O;A,D)/ f4 (B,O;C,D), where p 

denotes the value of f4 ratio, suggesting the 

amount of ancestry the population A has received 

from the ancestral population group C (Reich et al. 

2009; Harris and DeGiorgio 2017). 

 

Number of migrations and ancestry 

proportions 
Lately developed methods qpWave and qpAdm 

apply the common ideas associated with f4-

statistics (Reich et al. 2012; Moorjani et al. 2013; 

Lazaridis et al. 2014; Haak et al. 2015). In qpWave, 

we first learn the least number of reference groups 

that are possibly involved in admixture history of a 

certain admixed test population, and later use 

qpAdm to estimate the proportions of ancestries 

the admixed test population has obtained from 

those reference groups. qpWave is also known as 

f4 rank test that calculates the rank for the matrix 

of f4 statistics with dimension p x q, where p 

indicates a list of possible reference populations to 

be tested and q is the number of suggested 

outgroups without any back-gene flow from the 

reference populations. f4 rank of the matrix will be 

0 when a population being tested has no 

admixture history, but each added mixing event in 

the shared population history of a set of test and 

reference populations will raise f4 rank of matrix 

by 1. Thus, qpWave gets the number of migrations 

affecting the admixture history of a target Test 

population. The method assumes the set of 

reference populations are related to the purported 

outgroup populations with a differential amount of 

shared genetic drift and no gene flow occurred 

between the suggested outgroups and either the 

test or reference populations (Reich et al. 2012; 

Moorjani et al. 2013; Lazaridis et al. 2014; Haak et 

al. 2015). qpAdm applies f4-statistics in a 

regression context to obtain the admixture 

coefficients for a test population by combining 

methods from qpWave. qpAdm framework first 

assumes that a test population received 

proportions α1, α2,……αn from a set of reference 

populations Xa, Xb,…Xn, and calculates the 

ancestry proportions each mixing reference group 

passes to the test population, examining the 

varying degree of genetic relationships (drift) 

between reference populations and a fitting 

number of outgroups without explicit modelling. 

Both the qpWave and qpAdm assume a deep 

evolutionary history between reference 

populations and outgroups without any recent 

gene flow between suggested set of outgroups 

and either the test or reference population. 

Therefore, caution must be taken while choosing 

reference and outgroup populations. qpAdm 
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framework has become a popular method, 

especially in the context of flourishing aDNA 

studies, explaining the ancient inherited elements 

of extant continental populations (Reich et al. 2012; 

Haak et al. 2015; Lazaridis et al. 2016; Damgaard et 

al. 2018; Narasimhan et al. 2019). 

 

Spotting gene flow via D-statistics 
Green et al. (Green et al. 2010) presented another 

four-population approach to detect the 

introgression of Neanderthal ancestry in modern 

humans, known as D-statistics.  It is a tool that 

validates an outgroup-rooted phylogenetic tree of 

four populations, where other three populations 

belong to the same in-group taxa and recognize 

the interbreeding between a non-sister lineage 

population (Neanderthal) and either of two sister 

lineage populations (Africans, non-Africans) by the 

measure of shared derived alleles.  Since derived 

alleles are mutations that accumulate in time after 

the split of the lineages of in-group taxa from the 

outgroup, both the sister lineage populations 

should share an equal number of derived alleles 

with the third group of non-sister lineage until 

there is some introgression. Higher derived allele 

sharing between the non-sister group and either 

of the sister groups indicates admixture. Thus, 0 

value of D-statistics in form D(Africans, non-

Africans, Neanderthal, Chimpanzee) indicates no 

Neanderthal related introgression in either group 

of modern humans. While in the case of 

hybridization between Neanderthal and either 

Africans or non-African sister groups, the value of 

D-statistics will deviate from 0. Green’s D-statistics 

was a simple model of admixture that occurred 

between a fixed number of people related to 

ancient ancestors of the populations to be tested, 

assuming random mating amongst them, but 

inferring admixture could be alarming when 

biased mixing happened between populations of 

different sizes.  However, an extended version of 

D-statistics introduced later by Durand et al. 

(Durand et al. 2011) and Patterson et al. (Patterson 

et al. 2012) assumed the model of admixture 

between different number of individuals related to 

non-randomly mating ancestral groups and in turn 

solved the risk of wrong inference if ancient 

groups themselves show a structured pattern. This 

extended D-statistics comes with a few essential 

advantages; It can analyse genotype data because 

of its robustness to the ascertainment bias unlike 

the genome sequence necessity applied to Green’s 

D-statistics, and also the Patterson’s D-statistics is 

applicable to detect admixture for any 

combination of four populations not just the 

introgression from archaic specimens. D-statistics 

is also called as abba/baba approach, indicating a 

sharing pattern of ancestral (a) and derived (b) 

alleles along the branches of a purported 

phylogenetic tree, where D = Nabba - Nbaba / 

Nabba + Nbaba; Nabba and Nbaba are the 

number of abba and baba sites across the 

genome. If we consider a D-statistic of form D 

(Ref1, Ref2, Test, Outgroup), D = 0 when abba and 

baba sites are equal in number; higher number of 

abba sites, showing higher derived allele sharing 

between Ref2 and admixing test group, would 

raise the value of D  beyond 0 (positive), while 

higher derived allele sharing between Ref1 and 

admixing test population, stated by higher baba 

sites, would decrease the value of D (negative) 

(Patterson et al. 2012; Harris and DeGiorgio 2017). 

The value of D-statistics lies in the range of -1 to 

+1 unlike the f4-statistic, and the significance of 

both D and f-statistics is conditional to the Z-score 

(> 3 or < -3), calculated by weighted block jack-

knife approach (discussed earlier).  

 

Population splits and admixture via 

graph construction approaches 
The above-mentioned statistical tools reflect the 

power of statistics that compute the amount of 

genetic drift and explain how different populations 

are related to each other. Applying these statistical 

approaches, we may also construct various graph-

like representations that relate population splits 

and gene flow for a bigger set of populations than 

f and D-statistics alone can handle. These graph 

building approaches indeed are complementary to 
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the results obtained from f- and D-statistics that 

analyse the genetic diversities of many populations 

and suggest an elaborate tree-like topology, 

illustrating their mutual relationships. Graph-based 

techniques analyse multiple population-level 

genomes to obtain the allele frequencies and build 

a complete tree of populations based on drift 

parameters which explain the complex 

evolutionary histories of these populations linking 

different episodic migrations and admixtures 

(Pickrell and Pritchard 2012; Lipson et al. 2013; 

Harris and DeGiorgio 2017; Wangkumhang and 

Hellenthal 2018). I will discuss three widely used 

tools, TreeMix (Pickrell and Pritchard 2012), 

qpGraph (Patterson et al. 2012), and MixMapper 

(Lipson et al. 2013). TreeMix applies the maximum 

likelihood approach to build a graph with directed 

networks of multiple populations underlying the 

best fitting network of branch lengths. These 

branch lengths compare the degree of genetic 

drifts (history) among a group of populations 

(Pickrell and Pritchard 2012). Supposing the 

evolution without selection (i.e., neutral), TreeMix 

uses multivariate normal distribution on allele 

frequency data (for both the biallelic loci and 

microsatellite data) to model the relative 

occurrence of different allelic variants observed 

among a group of populations. In general, 

descendant populations contain a similar amount 

of mean allele frequencies as their ancestor, and a 

difference in allele frequencies of two given 

populations is associated with the difference in 

their shared genetic drift relative to their ancestor.  

In the iterative approach of TreeMix, first a 

maximum likelihood tree is selected out of 

possible trees formed from three randomly picked 

populations during each repetition, to which 

residual groups are added randomly one after the 

other. Finally, the tree is locally rearranged to 

evaluate the fit to the data and the best tree that 

rises the likelihood is considered (Pickrell and 

Pritchard 2012; Harris and DeGiorgio 2017). The 

automated fitting procedure enables TreeMix to 

appropriately handle larger trees with several 

possible admixture scenarios at the same time; for 

example, a graph containing mixture events 

defined by the user or without any migration 

event. Though TreeMix graphs can easily deduce 

the degree of population differentiation in case of 

good quality modern genomes, it is not that 

straight with ancient specimens especially with the 

low-quality genomes. Thus, it is recommended to 

avoid construing branch lengths in such cases; 

however, the positioning of populations on the 

tree remains useful even with the ancient genomes 

(Raghavan et al. 2014). 

In the case of other tree-building tools like 

qpGraph (Patterson et al. 2012) and its generalized 

version MixMapper (Lipson et al. 2013), users need 

to define the admixed and unadmixed population 

groups beforehand; therefore, they are better 

suited to apply on a set of specified populations. 

qpGraph analyses the genotype data and a 

suggested tree relating all populations (including 

mixed and non-mixed) and provides estimated 

branch lengths and admixture fractions that best 

fit the calculated allele frequency statistic (f-

statistics).  On the contrary, MixMapper fits 

populations in two phases; initially, it builds a 

neighbour-joining tree scaffold of unadmixed 

groups, identified by f3-statistic, and then adds 

admixed groups on to this early tree scaffold 

based on best-fitting parameter values. 

MixMapper does not need a hypothesized tree 

relating populations in advance as is the case with 

qpGraph, making it more suitable to infer ancestry 

in larger data sets like TreeMix (Lipson et al. 2013; 

Harris and DeGiorgio 2017). Similar to TreeMix, 

MixMapper is also capable of identifying three-way 

admixtures and presenting gene flow (or 

migration) between population lines. Although the 

admixture graph produced by MixMapper might 

be more precise than that of TreeMix due to the 

additional ability of MixMapper in assigning 

admixed and unadmixed populations; 

nevertheless, this ability also restricts MixMapper 

from analysing a data set as large as TreeMix can 

(Harris and DeGiorgio 2017). Seeing differential 

suitability of each graph constructing methods to 

different contexts, selection of the best method to 
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produce a graph for a given set of populations 

mostly relies on prior knowledge about the 

complexity of population histories of target groups 

(Lipson et al. 2013).   

 

 
 

Figure 2. Inferred human phylogenetic tree fitting admixture events. The structure of TreeMix and 

MixMapper constructed graph plots taken, respectively, from Pickrell et al. (2012) and Lipson et al. (2013). 

TreeMix plots comprise archaic hominins and modern human population groups: (A) maximum likelihood 

tree relating all modern humans and archaic hominins without considering any migration (B) tree allowing 

for ten migration events that occurred between different continental groups of modern humans. The 

colour of migration edges reflects the migration weight while horizontal branch lengths correlate to the 

corresponding degree of genetic drifts each branch has faced; Graph fitting mixture parameters by 

MixMapper: (C) this two-phase method initially builds a tree of unadmixed populations and then tries to fit 

the remaining populations as admixtures. In the first phase, MixMapper yields a ranking of likely 

unadmixed trees in order of deviation from f2-additivity, then this list is used to select a tree as a scaffold. 

In the final phase, MixMapper attempts fitting remaining populations as two- or three-way mixtures 
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between branches of the unadmixed tree. In each case, MixMapper applies bootstrap resampling to 

obtain collective predictions, thus enabling confidence estimation for inferred results. 

 

 

Tracking the time of admixture 

Applying the aforementioned approaches, we may 

answer a range of questions related to the impact 

of past migrations and mixings for a population of 

interest, but a comprehensive sketch of the 

admixture history associated with that population 

will not be complete without knowing the time of 

occurrence of the admixture event. I briefly discuss 

here, ROLLOFF (Moorjani et al. 2011; Patterson et 

al. 2012), ALDER (Loh et al. 2013) and MALDER 

(Pickrell et al. 2014), the widely used approaches 

for admixture dating. They exploit the drift and 

linkage disequilibrium (LD) obtained from the 

allele frequencies of a set of populations to infer 

the date of the admixture, a population of interest 

has encountered. Linkage disequilibrium (LD) is the 

non-random pattern of association among alleles 

at more distant loci. Recombination events that 

occur at least once in a sufficiently longer genome 

split up specific alleles from one another, thus the 

admixture created LD between allelic sites that are 

farther away from each other decays each 

generation. Thus, the size of genome segments 

with a haplotype that contains two neutrally 

evolving markers decline as a function of time 

since admixture, which can be applied to get the 

admixture date.  Both ROLLOFF and ALDER model 

the exponential LD decay among pairs of SNPs on 

the same chromosome compared to their genetic 

distances, weighted by the ability of each marker 

to differentiate between proxies of the admixing 

source groups, which is called as weighted LD 

statistic (Moorjani et al. 2011; Loh et al. 2013; Harris 

and DeGiorgio 2017; Wangkumhang and 

Hellenthal 2018).   

Owing to a new algorithm implementation in 

ALDER, it is not just faster than ROLLOFF, but also 

immune to sampling bias and bottlenecks or 

recent admixture events in populations. An 

additional advantage of the ALDER over ROLLOFF 

comes from its capability to calculate the 

admixture date from a single reference and the 

admixed population in case one of the admixing 

groups is unknown. ALDER also nullifies the 

obscure inference due to the background LD noise 

by fitting the weighted LD curve for sufficiently 

distanced pairs of loci. ALDER and ROLLOFF, 

respectively, can date the admixture events of 300 

and 500 generations old; however, they assume a 

single pulse of admixture and thus a continuous 

mixing pattern in populations history of a group 

might reveal the most recent admixture event 

(Patterson et al. 2012; Loh et al. 2013; Harris and 

DeGiorgio 2017). Lately, a method MALDER 

(Pickrell et al. 2014) extending the ideas of ALDER 

(Loh et al. 2013) was developed to date the 

multiple admixture events that involved different 

admixing sources. Considering a variety of 

reference admixing sources, MALDER uses a 

mixture of exponential LD decay curves instead of 

the single exponential decay curve as a function of 

genetic distance; therefore, formally testing the 

existence and times of multiple mixing events. 

Summarizing the global population 

histories through drift and conclusions 
Applying the earlier discussed approaches to 

countless genomes from modern and ancient 

human populations enabled studies to unravel 

distinct ancient admixture and migration patterns 

that shaped the population dynamics across the 

world. These tools advanced the investigations of 

human population history to a greater extent, 

providing the genetic evidence of the 

interbreeding between the ancestors of modern 

non-African humans and archaic hominins 

(Neanderthal and Denisovans), revealing the 

ancient population structures in West Eurasia and 

complex demographic histories of human 

populations across Eurasia, apart from 

characterizing the genetic component of ancient 

Indus Valley civilization people in South Asia. 
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Drift based approaches, especially D-statistics, 

played a pivotal role in discovering that almost all 

modern non-Africans harbour a small portion of 

ancestry from Neanderthal owing to the 

interbreeding events between their ancestors and 

Neanderthal that occurred outside of Africa 

around 50–60 KYA (Green et al. 2010; 

Sankararaman et al. 2012; Prüfer et al. 2014; Vernot 

and Akey 2015; Skoglund and Mathieson 2018). 

Later, the evidence of introgression related to 

other archaic hominins, Denisovans, was observed 

in modern humans living in Melanesia, and to 

mainland East and South Asia as well, but at a 

lower level (Reich et al. 2010; Skoglund and 

Jakobsson 2011; Meyer et al. 2012; Qin and 

Stoneking 2015; Browning et al. 2018).   

However, it seems that the ancient ancestors of 

modern humans were great voyagers which 

resulted in continuous population movements to 

different territories and episodes of admixture with 

each other as well, making the demographic 

histories of continental populations quite complex 

and interesting. Combining different genetic drift 

measuring tools to analyse the genomes of 

modern and ancient individuals have revealed 

great details of the present and past population 

histories of America, Africa and Eurasia (Reich et al. 

2009; Tishkoff et al. 2009; Metspalu et al. 2011; 

Pagani et al. 2012; Moorjani et al. 2013; Lazaridis et 

al. 2014; Pickrell et al. 2014; Raghavan et al. 2014; 

Skoglund et al. 2014; Allentoft et al. 2015; Haak et 

al. 2015; Mathieson et al. 2015; Raghavan et al. 

2015; Basu et al. 2016; Lazaridis et al. 2016; 

Skoglund et al. 2016; Chaubey et al. 2017; 

Damgaard et al. 2018; Lazaridis 2018; Moreno-

Mayar et al. 2018; Pathak et al. 2018; Narasimhan 

et al. 2019; Shinde et al. 2019). 

Interestingly, in the case of South Asia that 

harbours the second highest genetic diversity after 

Africa, these approaches have been greatly helpful 

to augment the knowledge regarding the complex 

demographic history of modern South Asian 

populations. Some of the f-statistics framework 

tools were initially developed to explain the 

populations histories of Indian people, resulting 

into the claim that all contemporary Indian 

populations mainly comprise of two genetic 

components, the West Eurasian related ANI 

(Ancient North Indian) and the autochthonous ASI 

(Ancestral South Indian) (Reich et al. 2009). Both 

the ancestral ANI and ASI groups were supposedly 

admixed around 1.9-4.2 KYA ago (Moorjani et al. 

2013), deriving modern South Asians who later 

shifted to endogamy practices (Moorjani et al. 

2013; Basu et al. 2016). These tools traced the 

approximate date of arrival of several historical 

migrants to India (Chaubey et al. 2016; Chaubey et 

al. 2017). They also detected the admixture event 

at 2-3.8 KYA between ancestors of Indian 

Austroasiatic and Southeast Asians that genetically 

shaped the modern Munda populations of India, 

besides finding the closest proxy of Southeast 

Asian surrogate using qpAdm (Tätte et al. 2019). 

Applying such approaches on modern genomes, a 

few studies successfully modelled the current 

South Asian populations using ancient individuals 

from West Eurasia and the first set of ancient DNA 

from South Asia (Pathak et al. 2018; Narasimhan et 

al. 2019; Pathak et al. 2019; Shinde et al. 2019). One 

such study (Pathak et al. 2018) also detected the 

distinctively high genetic affinity of the historical 

Indian group, Ror, with the Bronze Age Steppe 

people and modern Europeans. In addition, they 

also observed that affinity of Ror to Europeans is 

correlated to the degree of Steppe component in 

Europeans. Combining drift measuring tools to 

analyse the first aDNAs from South Asia have 

served well to untangle the hidden facts about the 

prehistorical peopling of South Asia (Narasimhan 

et al. 2019; Shinde et al. 2019). Shinde et al. (Shinde 

et al. 2019) inferred that modern South Asians are 

largely the descendants of the Bronze Age Indus 

people; however, the Steppe ancestry that is 

prevalent in contemporary South Asians, especially 

in North and Northwestern Indians, lacked in the 

Bronze Age IVC people.  They claimed that IVC 

people were comprised of genetic components 

from Southeast Asian hunter-gatherers (Onge like) 

and ancient Iran related ancestry that was present 
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before the split between the ancient Iranian 

farmers and hunter-gatherers i.e., before the rise 

of farming in Fertile Crescent; thus, postulating 

that the development of agriculture in South Asia 

happened either indigenously or through the 

exchange of ideas. While the other study 

(Narasimhan et al. 2019) observed a complicated 

pattern of migrations and mixings between Central 

and South Asian groups during the prehistorical 

era, and one such migration led admixture during 

the Late and Middle Bronze age is mostly 

responsible for the spread of Steppe ancestry to 

South Asia.  

Contamination in genomes might mimic the 

admixture signal, resulting into the inaccurate 

inference of complex population histories of 

humans, especially with the low-quality ancient 

genomes. Most of current methods might not be 

able to differentiate between a true signal of 

admixture and artefacts; therefore, developing 

methods that ignore contamination bias will be 

helpful. The aforementioned outgroup f3-statisitic 

has been the key to address such problems, it is 

quite robust to contamination, providing the 

precise genetic similarity between populations. 

Also, presently available admixture graph methods 

have some limitations, e.g., the inability of 

qpGraph to infer the tree topologies and graph 

parameters simultaneously, while TreeMix and 

MixMapper need to examine a delimited space of 

potential admixtures. Therefore, it will be helpful to 

develop a robust, fast and automated admixture 

graph tool that can deduce the phylogenetic tree 

and graph parameters, in parallel, for a larger 

sample size. However, the approaches to measure 

genetic drifts and related advances will stay crucial 

in faster and more accurate analyses of a growing 

number of human genomes, both modern and 

ancient, providing the essential analytical strength 

to our hunt of a greater and deeper 

understanding of the unresolved factors that 

shaped the rich population histories of humans 

across the world. Particularly, the cumulative 

genomes of ancient individuals from the vast 

tropical regions that remained unexplored until 

late due to the environmental constraints, now 

showing the potential in extraction of ancient 

genomes from such regions owing to the 

advancing technologies, will prove beneficial in 

combination with drift measuring approaches and 

provide a more complete picture of human 

movements and admixtures. Additionally, given 

the accessibility to new genome and phenotype 

data from both the modern humans and ancient 

hominins, it will be essential to develop new 

methodologies that can jointly model both the 

admixture and selection.  
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