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ABSTRACT 

The advent of next-generation sequencing technology enabled population scale human genome 

projects. Contemporary development of high-throughput genotyping arrays contributed to deep 

characterization of each base of 3.2 billion bases of human genome. To host this vast amount of 

genetic variant data, large scalable and fast searchable databases and bioinformatics tools for variant 

annotations and analyses have been developed in the last decade. The databases and computational 

resources for genetic variants facilitated novel discoveries and observations across many disciplines of 

biology and medicine, such as the pattern of evolution, speciation, pharmacology, and last but not the 

least, genetic bases of human health and diseases. This article puts forth the databases and 

computational resources for human genome variation analysis. 
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INTRODUCTION 
Recent advancements in genomic techniques and 

technologies have discovered genetic variants in 

the human genome at an unprecedented rate that 

has never been achieved in the history of mankind. 

Largely attributed to high-throughput next 

generation DNA sequencing technologies, the 

human genome is being characterized at a single 

base resolution, integrating the genotype and 

phenotype using much shorter time and 

resources. The emergence of genetic variation 

databases, such as i) dbSNP and HGV for short 

genetic variations, ii) dbVar and DGV for structural 

variations, iii) dbGaP for genotype/phenotype 

interaction studies, and iv) ClinVar and ClinGen for 

human variations of clinical significance, facilitates 

the contemporary identification/discovery of i) 

known or novel polymorphisms, ii) phenotype to 

genotype associations, and iii) clinically important 

human genetic variations. In a rough estimate, the 

number of Single Nucleotide Polymorphisms 

(SNPs) in dbSNP database has increased from ~61 

million to >695 million (~11 fold) in the past few 

years (Figure 1A). To drive the functional 

implication of SNPs, enormous attempts have 

been made to associate the human diseases to 

these genetic variations, thus resulting in the 

growth of ClinVar database from ~64 thousand to 

~888 thousand (~14 fold) entries in the last seven 

years (Figure 1B). Parallel to the above-mentioned 

growth of genetic variant databases, 

bioinformatics algorithms or tools have been 

developed to predict the impact of clinically 

important variants into different categories like 

“damaging”, “pathogenic”, “probable pathogenic” 

in a very short time. Together, these resources are 

becoming essential for functional analysis of 

genetic variants. The author must acknowledge 

that many of the databases and computational 

resources of similar theme could not be included 

due to the limitation of space in this article. 

 

Database of short genetic variations 

(dbSNP) 
Sequence variations in human genome may affect 

an individual’s phenotype. These genetic 

polymorphisms from different genetic loci might 

be implicated in defining the susceptibility or 

propensity of a person towards complex diseases, 

such as cardiovascular diseases and cancer. In 

contrast, polymorphism in a single gene or locus 

can cause a disease that is inherited in Mendelian 

fashion, called monogenic diseases. The sequence 

variations or mutations in the genome have been 

utilized as tools for (i) physical mapping of 

genomic loci, (ii) functional interpretation, (iii) 

evolutionary studies, and (iv) large-scale genome-

wide association studies. 

The dbSNP is a public repository of all types of 

simple genetic variations from different species. 

Genetic variants or SNPs could be classified as 

germline and somatic on the basis of origin of the 

variants. The database includes single base 

substitutions (also known as SNPs), multi-base 

deletions or insertions (called INDELS), 

retrotransposable element insertions, and 

microsatellite repeat variations (also called as short 

tandem repeats or STRs). Each entry in the dbSNP 

database present the sequence context of the 

polymorphism (i.e. the surrounding nucleotide 

sequences), occurrence frequency of the 

polymorphism in an individual or population, 

experimental method used to determine that 

polymorphism. 

Physical and genetic mapping 
Genetic variations are used as positional markers 

in the physical map of the genome. Since the 

polymorphisms have sequence context, the 

variations mapping uniquely to the genome can 

serve as stable landmarks in the genome. Genetic 

maps can be created by identifying positions of 

different genetic markers, such as i) gene marker, 

and DNA markers including, ii) RFLP (Restriction 

Fragment Length Polymorphism), iii) SSLP (Simple 
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Sequence Length Polymorphism), and iv) SNP 

(Single Nucleotide polymorphism). 

 

 

Figure 1: A) Total number of entries in dbSNP 

database as a function of database build. B) The 

similar statistics for ClinVar database but as a 

function of the past few years. These statistics were 

obtained in October 2019. 

The resolving power of the genetic map depends 

on the cross-over mechanism. In the lower 

organisms, it is easy to study a large number of 

cross-overs (i.e. one can have millions of bacteria 

divided in a short time), but it is very difficult in 

eukaryotic organisms where the number of 

progenies is limited in a family. Thus, we need an 

alternate map of the genome called physical map 

to aid the genome sequencing project of complex 

organism like humans. The tools to create physical 

map could be i) restriction mapping, ii) FISH 

(Fluorescent in situ hybridization), and iii) STS 

(Sequence Tagged Sites). Genetic as well as 

physical mappings have played very crucial roles in 

human genome sequencing project. For smaller 

genome likes, bacterial and viral genomes, the 

assembly of the sequenced contigs is not very 

difficult due to the presence of high-resolution 

genetic maps. However, in the higher eukaryotes, 

the genome sequencing projects need a prior 

genome map in order to circumvent the issues of 

i) large amount of DNA repeats in the genome 

and ii) large size of the genome. 

 

Functional analysis 
Polymorphism in functional (coding) or regulatory 

(non-coding) regions of the genome might cause 

changes in the pattern of transcribed genes. The 

variations in the coding region of the gene might 

impact the final protein product depending on the 

nature of mutation (i.e. synonymous or non-

synonymous). The non-synonymous SNP (nsSNP) 

leads to i) an amino acid change in the protein 

(called missense mutation), ii) stop-gain or chain-

terminating codon, leading to premature 

truncated protein (nonsense mutation), and iii) 

stop-loss (mutation in the original stop codon) 

leading to abnormal extension to the carboxyl 

terminal of protein. In contrast, the SNPs in the 

regulatory regions (rSNP) of the gene might affect 

the transcription factor binding efficiency, altering 

the transcript levels. 

The point of concern is the impact of nsSNPs on 

the normal function of the individual. Some 

nsSNPs can be tolerated and others might cause 

the disease. Bioinformatic prediction of tolerance 

for a specific nsSNP helps prioritize the potential 

disease-causing variants in humans. Such 

predictions are based on protein or amino acid 

features (at variant sites), such as sequence 

features, biophysical properties, structural 
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properties, and evolutionary properties derived 

from sequence alignment. Supervised machine 

learning methods are largely used to develop such 

prediction models. Most important methods 

include SIFT(Vaser et al. 2016), PolyPhen (Adzhubei 

et al. 2010), MutDB (Singh et al. 2008), SNPeffect 

(De Baets et al. 2012), MutationAssessor (Reva, 

Antipin, and Sander 2011), which predict the 

impact of non-synonymous mutations on protein 

function in different categorical classes such as 

“damaging”, “benign”, and “probable damaging”. 

Evolutionary studies 
Genetic variations have been extensively used in 

studying the evolution of the genetic lineages of 

human population locally or globally (Chaubey et 

al. 2008; Romualdi et al. 2002). There has been a 

big initiative to identify the set of nearby SNPs on 

the same chromosome inherited in blocks (called 

“haplotype”) in human genome. The term 

haplotype may be defined as a group of alleles in 

an organism that are inherited from a single 

parent. Some of the SNPs in the haplotype are 

unique enough to identify that haplotype and are 

thus called tag SNPs. Tag SNP may be defined as 

a representative SNP in the region of genome with 

high linkage disequilibrium. International HapMap 

project 

[https://www.genome.gov/10001688/international-

hapmap-project] was an effort to create a map of 

such haplotypes on the human genome. 

Moreover, another big initiative was 1000 genome 

project (Altshuler et al. 2010; Genomes Project et 

al. 2012; Auton et al. 2015) 

[https://www.internationalgenome.org/] that 

seems to overshadow the utility of HapMap 

project. The resources created by 1000 genome 

project are valuable and are serving as a global 

reference for human genetic variations. A few of 

the most common applications (Zheng-Bradley 

and Flicek 2017) of this project are i) genotype 

imputation (supporting GWAS studies), ii) mapping 

eQTL (expression Quantitative Trait Loci), iii) 

prioritization of variants for pathogenicity, iv) 

supporting whole genome and cancer genome 

sequencing projects, and v) studying population 

structure and molecular evolution. Nevertheless, 

the quality assessment of 1000 genome dataset 

reflects that imputation and phasing for rare 

variants are unreliable (Belsare et al. 2019). 

The genome similarity of two randomly selected 

human individuals is maximum 99.9%. Thus, 0.1% 

of their DNA is dissimilar, giving rise to 

individuality. Moreover, these variations in human 

genomes define diversity, susceptibility to diseases, 

and precision of the response to medicines 

(Shastry 2002). Positive selection has been an 

important evolutionary tool to shape the modern 

humans. Through the advent of the high-

throughput genome sequencing technologies and 

the robust statistical models, various population 

scale evolutionary measurements have become 

possible to compute, such as heterozygosity, FST 

(population differentiation) (Beaumont 2005), and 

Tajima’s D (allele frequency spectrum) (Tajima 

1989) to identify positive signals (Cheng et al. 

2009). 

Genome-wide association studies 

(GWAS) 
Genetic variations are well known to affect human 

phenotype, including health and diseases. 

Differences in SNPs between two individuals may 

lead to different phenotypes. With the availability 

of large genome-wide genetic variants data across 

populations, one can attempt to identify variant 

alleles linked to a particular phenotype such as 

ageing (Melzer, Pilling, and Ferrucci 2019), 

adipocity (Rask-Andersen et al. 2019), cancer 

(Couch et al. 2016), cardiovascular(Yao et al. 2018), 

or diabetes (Fuchsberger et al. 2016). This area 

named Genome-wide Association Studies (GWAS) 

dominated the genomics field for about a decade. 

The underlying assumption in GWAS is that the 

causal allele frequency is higher in cases 

(individuals with the trait under study) than in 

controls (individuals without the trait under study). 

Moreover, GWAS has its own benefits and 

limitations discussed in this excellent review article 
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(Tam et al. 2019). A recent article summarized the 

GWAS discoveries in the context of diseases 

biology and its application towards new 

therapeutics (Visscher et al. 2017). 

There are several databases hosting the GWAS 

datasets and their output for public use. Few such 

databases are, i) NHGRI-EBI catalog of published 

genome-wide association studies called “GWAS 

Catalog” [https://www.ebi.ac.uk/gwas/], ii) GWAS 

central [https://www.gwascentral.org/], iii) 

GWASdb v2 [http://jjwanglab.org/gwasdb], iv) 

Case-control GWAS database 

[https://gwas.biosciencedbc.jp/cgi-

bin/gwasdb/gwas_top.cgi], v) Human Genome 

Variation Database 

[https://gwas.biosciencedbc.jp/], vi) GWAS Atlas 

[https://atlas.ctglab.nl/].   

 

The database of structural variations 

(dbVar) 
The database of structural variation (dbVar) 

[https://www.ncbi.nlm.nih.gov/dbvar/] is a part of 

the NCBI databases. Structural variations (SV) 

comprise insertion, deletion, inversion, 

translocation, and duplication. By definition, SV is a 

region of DNA larger than 1000 bp (1kb) including 

genomic imbalances and commonly referred to as 

the copy number variation (CNV). The CNVs have 

also become notable for their contribution in 

genetic diversity and diseases (Redon et al. 2006; 

Freeman et al. 2006). Currently, the non-

redundant dbVar database houses more than 2.2 

million deletions, 1.1 million insertions, and 300 

thousand duplications. Few other databases are 

available to mine the human genome structural 

variation data such as, i) Database of Genomic 

Variants (MacDonald et al. 2014) 

[http://dgv.tcag.ca/dgv/app/home], ii) An open 

resource of structural variations (Collins et al. 

2019), iii) JVar-SV [https://www.ddbj.nig.ac.jp/jvar-

sv/index-e.html]. A recent article describes the 

integrated set of eight structural variation classes 

constructed using short-read sequencing data and 

statistically phased haplotype blocks in 26 human 

populations (Sudmant et al. 2015). The major 

finding of this study was that the structural 

variations are enriched on haplotypes identified 

using GWAS studies and exhibit enrichment for 

expression quantitative trait loci (eQTL) (Sudmant 

et al. 2015).  

 

The database of genotypes and 

phenotypes (dbGaP) 
The dbGaP (Mailman et al. 2007; Tryka et al. 2014) 

is a collection of datasets and the corresponding 

results generated from studies investigating the 

association of genotypes and phenotypes 

[https://www.ncbi.nlm.nih.gov/gap/]. Broadly two 

classes of data are submitted to dbGaP, i) 

molecular data and ii) phenotypic data. Molecular 

data comprise genotype data, expression data, 

epigenomic data, genomic sequence data and 

somatic mutation data. Phenotype data are 

summarized as columns representing clinical, 

demographic, and exposure data for each row as 

a subject. Currently more than 2.4 million 

molecular assays have been documented in 

dbGaP studies. Each of such assays can have 

hundreds to millions of data points (e.g. SNPs, 

CNV, and nucleotides). The major objective of 

genotype-phenotype databases is to facilitate 

assigning pathogenicity to genetic variants. 

Currently, the quality and volume of phenotypic 

data compared to genotypic data in genotype-

phenotype databases is lower owing to ethical, 

financial, legal and other challenges that must be 

overcome to produce large-scale phenotypic data 

(Brookes and Robinson 2015).  

 

ClinVar database 
ClinVar (Landrum and Kattman 2018; Landrum et 

al. 2018; 2016) 

[https://www.ncbi.nlm.nih.gov/clinvar/] is the 

public repository of the asserted or validated 

relationships among human genetic variants and 

the clinically significant phenotypes. These records 
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are supported by evidence. It also works as a 

collaboration among medical geneticists to identify 

the clinically significant genetic variations. ClinVar 

accepts submission of variants for any part of 

genome and for all types of conditions. Clinical 

testing, preclinical research, and published 

scientific literature form the basis of clinical 

assertion of variants in ClinVar database. 

Submissions are accepted at different complexity 

levels ranging from variant-level submission 

(representation of an allele and its interpretation) 

to case-level submission (experimental evidence 

about the effect of variants on phenotype). 

Currently this database contains about 888 

thousand submissions. 

 

Human Genome Variation (HGV) 

database 
HGV [https://hgv.figshare.com/] is a collection of 

human genetic variants published in peer-

reviewed “Data Reports” and other articles in 

Human Genome Variation journal. Data reports 

are short reports describing human genome 

variation and variability and their associated 

disease/phenotype. It has a standardized format of 

data collection for each variant. Data reports are 

linked to its HGV database links and vice versa. 

This database provides various filters such as 

population type, mutation type, and zygosity type, 

which can be used to compile useful datasets. 

Database of Genomic Variants (DGV) 
DGV(MacDonald et al. 2014) 

(http://dgv.tcag.ca/dgv/app/home) is a curated 

database of human genomic structural variation. 

The structural variation has been defined as any 

genetic alterations involving segment of DNA 

larger than 50 base pairs. This database contains 

comprehensive summary of human genome 

structural variations only from healthy control 

individuals. Currently DGV hosts more than 6.3 

million CNVs and about 30446 inversions. This 

database may serve as a catalog of control data to 

be used in the studies aiming to correlate 

structural variations to phenotypic data. 

ClinGen (Clinical Genome Resource) 
ClinGen (https://www.clinicalgenome.org) is a 

resource for exploring clinical relevance of genes 

and variants. It is an NIH-funded program 

dedicated to developing a central resource that 

defines the clinical relevance of genes and 

variants. ClinGen presents important curation tools 

such as,i) Gene-disease validity tools, ii) Variant 

pathogenicity tools, iii) Dosage sensitivity tools, 

and iv) Clinical actionability tools to the scientific 

community. This resource is very useful in seeking 

answers to questions like,i) ‘is this gene associated 

with a disease?’, ii) ‘is this variant causative?’, iii) ‘is 

this information actionable?’. ClinGen (Dolman et 

al. 2018) is facilitating to build a genomic 

knowledgebase together with ClinVar and other 

resources.  

Bioinformatic resources for functional 

interpretation of genetic variants 
Genetic variants can be broadly classified into two 

groups, i) lying within the coding regions (cSNP), 

and ii) lying within the noncoding or regulatory 

regions (rSNP) of the genome. Interpretation of 

the cSNP is straightforward and relatively easy due 

to its mapping on the gene structure that is 

translated into a protein product. Therefore, one 

can know the exact location of cSNP in the frame 

of translation. cSNP may be synonymous or non-

synonymous based on its location on the triplet 

codon and the degeneracy of codons. 

Synonymous SNP leads to no change in resulting 

amino acid in protein, but non-synonymous SNP 

do. Non-synonymous may be divided into 

different types such as missense, non-sense (stop 

gain), stop loss, etc. All this positional information 

along with great deal of functional annotations 

about SNPs can be obtained through softwares, 

such as ANNOVAR(Wang, Li, and Hakonarson 

2010; Yang and Wang 2015), SnpEff (Cingolani et 

al. 2012), Variant Annotation Tools (San lucas et al. 

2012), VarAFT (Desvignes et al. 2018), Vcfanno 

http://dgv.tcag.ca/dgv/app/home
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(Pedersen, Layer, and Quinlan 2016). With this 

basic knowledge of non-synonymous mutations, 

one can use bioinformatics prediction methods to 

assess the impact of these mutations (Vaser et al. 

2016; Adzhubei et al. 2010). The structural and 

functional interpretation of SNPs was also studied 

in the context of protein interaction network (Lu, 

Herrera Braga, and Fraternali 2016). 

 On the contrary, the functional 

interpretation of rSNP is relatively difficult for many 

reasons for e.g. i) it is not expressed as a protein 

product, ii) the regulatory mechanism in the 

human genome is complex and requires the 

knowledge of many layers of information to 

identify whether a rSNP is functional or not. 

Moreover, like the cSNPs, rSNPs have also been 

known to affect human health to a great deal. In 

cancer, the role of rSNPs is being studied deeply 

and this type of variations may disrupt 

transcription factor-binding sites, affecting the 

resulting gene expression or may affect non-

coding RNA loci (Khurana et al. 2016).  

There are various computational 

algorithms being developed to assess coding and 

non-coding variants in many different disease 

models. A method named Prioritization And 

Functional Assessment (PAFA) based on 

population differentiation measures was 

developed to assess the noncoding variants 

associated with complex diseases (Zhou and Zhao 

2018). One can run an in-silico analysis on a set of 

SNPs (coding and noncoding) to identify the most 

impactful SNPs for a particular gene associated 

with a disorder, such as obesity and insulin 

resistance (Elkhattabi et al. 2019), retinal 

vasculature defect (Madelaine et al. 2018), 

Alzheimer’s disease (Tey and Ng 2019). Noncoding 

risk variants can also be identified using disease-

related gene regulatory networks (Gao et al. 2018). 

Another recent computational pipeline exploiting 

the conservation of the SNP alleles revealed a set 

of regulatory SNPs relevant to the peripheral nerve 

(Law et al. 2018). Moreover, the rSNPs at the 

promoter region of the ERCC5 gene have been 

studied for their implication in transcription factor 

binding and thus affecting gene expression (Chen 

et al. 2016). To conclude this, I refer the readers to 

a few good reads about functional 

characterization of noncoding variants (Jin et al. 

2018; Nishizaki and Boyle 2017).  

Discussion 
The evidences presented in this article suggest that 

there has been an unprecedented increase in the 

identification of human genetic variations (Figure 

1A). Unsurprisingly, the functional studies of SNPs 

kept pace with the emergence of the huge SNP 

datasets as evidenced by the statistics of ClinVar 

database (Figure 1B). Along with the development 

of genetic variations databases, the evolution of 

bioinformatics tools and prediction algorithms to 

assess or interpret the functional significance of 

SNPs dataset is no longer lagging behind. 

Together these bioinformatics resources are 

serving the scientific community, saving their time 

and experimental complexity in order to predict 

the functional impact of a mutation. 

 The resources described in this manuscript 

have been heavily used by the evolutionary 

biologists to capture the genetic diversity within 

and across the human populations. Population-

scale genome and exome sequencing revealed 

that individuals from different populations carry 

different profiles of rare and common variants and 

that low-frequency variants show substantial 

geographic differentiation (Genomes Project et al. 

2012). The recent update from 1000 genome 

project provides statistics on over 88 million 

variants (84.7 million SNPs, 3.6 million short 

INDELS, and 60,000 structural variants) (Auton et 

al. 2015). This resource contains >99% of SNPs 

with an allele frequency of >1% derived from a 

variety of human ancestries. Together, the human 

genetic variation dataset provides insights into the 

evolutionary processes that shape genetic 

diversity. Moreover, the quality assessment of the 

large-scale dataset is also important to make use 

of the resources properly (Belsare et al. 2019). 
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 The global reference of human genetic 

variations has great applications in identifying 

disease causing variants and developing 

diagnostics and therapeutics to treat various 

diseases (Lek et al. 2016). In context of rare genetic 

diseases (e.g. cystic fibrosis, phenylketonuria, 

sickle-cell anemia, Huntington’s disease), the 

identification of causal variants (with low allele 

frequency) greatly depends on the availability of 

large human genome dataset along with 

computed allele frequency. Now we know that 

rare or low frequency variants not only cause rare 

genetic diseases but also cause common diseases 

(Bomba, Walter, and Soranzo 2017) or traits such 

as LDL cholesterol, low or high levels of 

cholesterol, triglyceride, type 2 diabetes, 

Alzheimer’s disease, short stature, height, 

adiponectin issues etc. 

 Nonetheless, the risk of genetic diseases 

can be misestimated across global population due 

to the fact that risk allele frequencies at known 

disease loci are significantly different for African 

populations compared to other continents (Kim et 

al. 2018). These continental differences in the risk 

allele frequencies can be moderately reduced by 

using whole genome sequences and hundreds of 

thousands of cases and controls across various 

populations. The availability of population specific 

genome databases in the future will help in 

precision diagnostic and medicine. 
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